Rubber Leaf Image Classification Using Artificial Intelligence Methods as an Effort to Improve Plantation Production Results
Abstract
Purpose: Rubber is one of the plantation commodities that contributes positively to the trade surplus in the agricultural sector. Seeing the positive trend in global rubber consumption and production, demand is expected to continue increasing in the future. To enhance rubber productivity, rubber processing technology can be used to make it more efficient, thus increasing the amount of latex extracted from the sap and reducing waste material
Design/methodology/approach: One technology that can be developed to increase the productivity efficiency of rubber plants is by using Artificial Intelligence. This technology is expected to be implemented in the rubber plantation sector, specifically in the automatic recognition of rubber leaves.
Findings/result: The measurement and performance analysis of the rubber leaf image classification algorithm based on Artificial Intelligence has also been evaluated, showing near-perfect accuracy on training data (99.86%) and very good performance on validation data (97.43%), with a very low validation loss (0.0873), indicating that the model has learned well by the last epoch
Originality/value/state of the art: The population in this study consists of image data from various tree leaves, including 10 types of rubber leaves and non-rubber leaves
Full Text:
PDFReferences
L. F. Syarifa, D. S. Agustina, A. Alamsyah, I. S. Nugraha, H. Asywadi, and S. Selatan, “OUTLOOK KOMODITAS KARET ALAM INDONESIA 2023 Commodity Outlook of Indonesian Natural Rubber 2023 Pusat Penelitian Karet . Jl . Raya Palembang – Pk . Balai Km . 29 , Sembawa , Email : [email protected],” vol. 41, no. September, pp. 47–58, 2023.
N. H. P. Harahap and B. A. Segoro, “Analisis Daya Saing Komoditas Karet Alam Indonesia ke Pasar Global,” Jurnal Transborders, vol. 1, no. 2, pp. 130–143, 2018.
B. S. Sembiring, Y. Syaukat, and Hastuti, “Struktur Pasar Dan Daya Saing Karet Alam Indonesia Di Amerika Serikat,” Buletin Ilmiah Litbang Perdagangan, vol. 15, no. 2, pp. 235–256, 2021, doi: 10.30908/bilp.v15i2.623.
S. H. Sahir, “Prospek Transaksi Komoditas Karet Indonesia Sesudah Pandemi Covid 19: Kajian Pustaka,” Warta Perkaretan, vol. 40, no. 1, pp. 1–14, 2021.
H. Dewi Purnomowati, S. Widodo, S. Hartono, and D. Hadi Darwanto, “Analisis Permintaan Karet Alam Indonesia di Pasar Internasional,” AGRARIS: Journal of Agribusiness and Rural Development Research, vol. 1, no. 2, pp. 136–148, 2015, doi: 10.18196/agr.1217.
Y. Jusman, I. M. Firdiantika, D. A. Dharmawan, and K. Purwanto, “Performance of multi layer perceptron and deep neural networks in skin cancer classification,” in 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), 2021, pp. 534–538.
L. Listyalina, I. Mustiadi, and D. A. Dharmawan, “Joint Dice and Intersection over Union Losses for Deep Optical Disc Segmentation,” in 2020 3rd International Conference on Biomedical Engineering (IBIOMED), 2020, pp. 49–54.
L. Listyalina and I. Mustiadi, “Accurate and Low-cost Fingerprint Classification via Transfer Learning,” in 2019 5th International Conference on Science in Information Technology: Embracing Industry 4.0: Towards Innovation in Cyber Physical System, ICSITech 2019, 2019, pp. 27–32. doi: 10.1109/ICSITech46713.2019.8987485.
J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” CoRR, vol. abs/1506.0, 2015, [Online]. Available: http://arxiv.org/abs/1506.02640
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection,” IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 2, pp. 318–327, 2020, doi: 10.1109/TPAMI.2018.2858826.
D. A. Dharmawan, D. Li, B. P. Ng, and S. Rahardja, “A new hybrid algorithm for retinal vessels segmentation on fundus images,” IEEE Access, vol. 7, pp. 41885–41896, 2019.
D. Li, D. A. Dharmawan, B. P. Ng, and S. Rahardja, “Residual u-net for retinal vessel segmentation,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019, pp. 1425–1429.
A. A. Kusumaning. Putri, “Sistem Klasifikasi Jenis Daun Berdasarkan Tekstur Menggunakan Algoritma Transformasi Haar Wavelet Dan Machine Learning,” 2022.
P. R. Prayoga, P. Purnawansyah, T. Hasanuddin, and H. Darwis, “No TitleKlasifikasi Daun Herbal Menggunakan K-Nearest Neighbor dan Support Vector Machine dengan Fitur Fourier Descriptor,” Edumatic: Jurnal Pendidikan Informatika, vol. 7, no. 1, pp. 160–168, 2023.
F. Fitrianingsih and R. Rodiah, “KLASIFIKASI JENIS CITRA DAUN MANGGA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 25, no. 3, 2020.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.
I. Buyung, A. Q. Munir, N. W. S., and L. Listyalina, “Identifying Types of Waste as Efforts in Plastic Waste Management Based on Deep Learning,” Telematika: Jurnal Informatika dan Teknologi Informasi, vol. 20, no. 3, pp. 362–372, 2023.
L. et al Listyalina, “Deep-RIC: Plastic Waste Classification using Deep Learning and Resin Identification Codes (RIC).,” Telematika : Jurnal Informatika dan Teknologi Informasi, vol. 19, no. 2, pp. 215–228, 2022.
DOI: https://doi.org/10.31315/telematika.v21i2.13587
DOI (PDF): https://doi.org/10.31315/telematika.v21i2.13587.g6691
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika