Formulating Nutritious Wet Noodles with Spirulina platensis: Exploring Proximate Composition, Antioxidant Activity, and Consumer Preferences

Resti Nurmala Dewi, Fenny Crista Anastasia Panjaitan, Sumartini Sumartini, Nita Ariestiana Putri

Abstract


The incorporation of Spirulina platensis into food products has been extensively explored. In this study, wet noodles were enriched with spirulina at three different concentrations: 1% (P1), 5% (P2) and 10% (P3). Sensory and hedonic evaluations, proximate composition and antioxidant properties were assessed. Overall, formulations P1 and P2 were significantly preferred (p < 0.05) in terms of appearance and aroma compared to the control (P0). Additionally, the texture and taste scores of spirulina-enriched wet noodles were higher (p < 0.05) than those of the control. Among all treatments, P1 emerged as the most favourable formulation (p < 0.05) for aroma, texture, and taste in the hedonic test. Moreover, the spirulina supplementation had significant effect on the protein and fat content (p < 0.05) compared to the control noodles. Furthermore, the antioxidant activity of the spirulina wet noodles increased in a dose dependent manner. The IC50 values for DPPH radical scavenging activity were 339.749 ppm for the control (P0), and 61.473 ppm, 39.965 ppm, and 27.439 ppm for P1, P2, and P3, respectively. These results suggest that fortifying wet noodles with Spirulina platensis not only improves the sensory attributes but also enhances the nutritional quality and functional value.

Keywords


antioxidant, microalgae, nutritious food, spirulina, wet noodles

Full Text:

PDF

References


Ahda, M., Suhendra, & Permadi, A. (2024). Spirulina platensis microalgae as high protein-based products for diabetes treatment. Food Reviews International, 40(6), 1796–1804. https://doi.org/10.1080/87559129.2023.2238050

Ahnan‐Winarno, A. D., Cordeiro, L., Winarno, F. G., Gibbons, J., & Xiao, H. (2021). Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1717–1767. https://doi.org/10.1111/1541-4337.12710

Aleksandrovna, G. G., Viktorovna, N. L., & Dementievna, Z. I. (2019). Spirulina as a protein ingredient in a sports nutrition drink. In Atlantis Press (Ed.), 4th International Conference on Innovations in Sports, Tourism and Instructional Science (pp. 162–166). Atlantis Press.

Andrade, L. M. (2018). Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Processing & Technology, 6(1). https://doi.org/10.15406/mojfpt.2018.06.00144

Anvar, A. A., & Nowruzi, B. (2021). Bioactive properties of spirulina: A review. Microbial Bioactives, 4(1), 134–142. https://doi.org/10.25163/microbbioacts.412117B0719110521

Asghari, A., Fazilati, M., Latifi, A. M., Salavati, H., & Choopani, A. (2016). A review on antioxidant properties of Spirulina. Journal of Applied Biotechnology Reports, 3(1), 345–351.

BSN. (2015). SNI 2987:2015 tentang Mie Basah. Jakarta: Badan Standardisasi Nasional.

BSN. (2010). SNI 2354.1:2010 tentang Kadar Abu. Jakarta: Badan Standardisasi Nasional.

BSN. (2011). SNI 2346:2011 tentang Petunjuk pengujian organoleptik dan atau sensori pada produk perikanan. Jakarta: Badan Standardisasi Nasional.

BSN. (2015). SNI 2354.2:2015 tentang Cara Uji Kimia-Bagian 2: Penguji Kadar Air Pada Produk Perikanan. Jakarta: Badan Standardisasi Nasional.

BSN. (2017). SNI 2354.3-2017 tentang Uji Kadar Lemak. Jakarta: Badan Standardisasi Nasional.

Bortolini, D. G., Maciel, G. M., Fernandes, I. de A. A., Pedro, A. C., Rubio, F. T. V., Branco, I. G., & Haminiuk, C. W. I. (2022). Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences, 5, 100134. https://doi.org/10.1016/j.fochms.2022.100134

Boutin, R., Munnier, E., Renaudeau, N., Girardot, M., Pinault, M., Chevalier, S., Chourpa, I., Clément-Larosière, B., Imbert, C., & Boudesocque-Delaye, L. (2019). Spirulina platensis sustainable lipid extracts in alginate-based nanocarriers: An algal approach against biofilms. Algal Research, 37, 160–168. https://doi.org/10.1016/j.algal.2018.11.015

Cardoso, L. G., Lemos, P. V. F., de Souza, C. O., Oliveira, M. B. P. P., & Chinalia, F. A. (2022). Current advances in phytoremediation and biochemical composition of Arthrospira (Spirulina) grown in aquaculture wastewater. Aquaculture Research, 53(14), 4931–4943. https://doi.org/10.1111/are.15996

Christwardana, M., Handayani, A. S., Febriyanti, E., Hadiyanto, H., & Nefasa, A. N. (2023). Proximate analysis and hedonic test on dried noodle with the addition of Spirulina platensis microalgae as a high protein food. Journal of Bioresources and Environmental Sciences, 2(1), 31–38. https://doi.org/10.14710/jbes.2023.17445

Coleman, B., Van Poucke, C., Dewitte, B., Ruttens, A., Moerdijk-Poortvliet, T., Latsos, C., De Reu, K., Blommaert, L., Duquenne, B., Timmermans, K., van Houcke, J., Muylaert, K., & Robbens, J. (2022). Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods, 5, 100139. https://doi.org/10.1016/j.fufo.2022.100139

Daryono, E. D., & Hutasoit, G. F. (2024). Ekstraksi minyak atsiri jahe (Zingiber officinale) dengan proses distilasi: pengaruh jenis jahe dan metode distilasi. Eksergi Jurnal Ilmiah Teknik Kimia, 21(2), 55. https://doi.org/10.31315/e.v21i2.11625

Devi, A., Sindhu, R., & Khatkar, B. S. (2020). Effect of fats and oils on pasting and textural properties of wheat flour. Journal of Food Science and Technology, 57(10), 3836–3842. https://doi.org/10.1007/s13197-020-04415-4

Dewajani, H., Rachmawati, D., Nabilla, C. B., & Novianti, F. T. (2024). Preparation of bioplastic from corn cob starch with the addition of essential oils as antioxidants. Eksergi Jurnal Ilmiah Teknik Kimia, 21(3), 194–201. https://doi.org/10.31315/e.v21i3.12797

Dewi, R. N., Budiadnyani, I. G. A., Febrianti, D., & Putrivenn, D. F. (2024). Pengujian organoleptik dan deteksi logam berat pada bahan baku dan produk bakso ikan lemuru (Sardinella lemuru) dari Selat Bali. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 18(2), 147. https://doi.org/10.15578/jpbkp.v18i2.973

Dewi, R. N., Mahreni, Nur, M. M. A., Siahaan, A. A., & Ardhi, A. C. (2022). Enhancing the biomass production of microalgae by mixotrophic cultivation using virgin coconut oil mill effluent. Environmental Engineering Research, 28(2), 220059–0. https://doi.org/10.4491/eer.2022.059

Dewi, R. N., Muncani, N. P. A. D., & Putri, N. P. D. K. (2024). Analisis penerapan good manufacturing practices (GMP): Studi kasus di dua industri pembekuan ikan di Denpasar Bali. Jurnal Perikanan Unram, 14(3), 1609–1620. https://doi.org/10.29303/jp.v14i3.925

Dewi, R. N., Nur, M. M. A., Astuti, R. P., Andriyanto, W., Panjaitan, F. C. A., Febrianti, D., Budiadnyani, I. G. A., Utari, S. P. S. D., Samanta, P. N., & Perceka, M. L. (2024). Bioremediation of seafood processing wastewater by microalgae: Nutrient removal, and biomass, lipid and protein enhancement. Environmental Engineering Research, 29(6), 230673–0. https://doi.org/10.4491/eer.2023.673

Dewi, R. N., Panjaitan, F. C. A., Febriyanti, D., Perceka, M. L., Khairunnisa, A., Farida, I., Budiadnyani, I. G. A., Utari, S. P. S. D., Samanta, P. N., Astiana, I., & Cesrani, M. (2024). Potential of Spirulina sp. for remediating pollutants in aquaculture wastewater and producing phycocyanin. Indonesian Fisheries Research Journal, 30(1), 27–35.

Dewi, R. N., Putri, N. A., Fauziah, S., & Saputra, A. (2024). Mikroalga: Sumber biomassa hayati unggul untuk masa depan berkelanjutan (1st ed., Vol. 1). Deepublish. https://deepublishstore.com/produk/buku-mikroalga-sumber-biomassa-hayati-unggul-untuk-masa-depan-berkelanjutan/?srsltid=AfmBOoqKcurYf0phu8dK5ulzJoP_WYzjjxULXyFkRc25YSjpzfgsuZvj

El-Anany, A., A. Althwab, S., Alhomaid, R. M., F. M. Ali, R., & M. Mousa, H. (2023). Effect of spirulina (Arthrospira platensis) powder addition on nutritional and sensory attributes of chicken mortadella. Italian Journal of Food Science, 35(4), 1–11. https://doi.org/10.15586/ijfs.v35i4.2368

Ersyah, D., Jaziri, A. A., & Setijawati, D. (2022). Effect of spirulina (Arthrospira platensis) powder on the physico-chemical and sensory characterization of dry noodle. Journal of Aquaculture and Fish Health, 11(3), 277–288. https://doi.org/10.20473/jafh.v11i3.20908

Farida, I., Dewi, R.N., & Ramadhani, A.R. (2023). Total bacteria and formalin analysis on fish and fishery products at traditional markets Negara, Jembrana, Bali. Buletin Jalanidhitah Sarva Jivitam, 5(2), 167–177. https://doi.org/10.15578/bjsj.v5i2.13156

Fradinho, P., Niccolai, A., Soares, R., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2020). Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Research, 45, 101743. https://doi.org/10.1016/j.algal.2019.101743

Grosshagauer, S., Kraemer, K., & Somoza, V. (2020). The true value of Spirulina. Journal of Agricultural and Food Chemistry, 68(14), 4109–4115. https://doi.org/10.1021/acs.jafc.9b08251

Hansen, H., & Sutriningsih. (2018). Antioxidant activities test with DPPH method katuk leaves extract (Sauropus androgynus (L.) Merr) and stability test effect of emulsifier concentration stearic acid and riethanolamine on cream formulation. Indonesia Natural Research Pharmaceutical Journal, 3(1), 119–130.

Hassanzadeh, H., Ghanbarzadeh, B., Galali, Y., & Bagheri, H. (2022). The physicochemical properties of the spirulina‐wheat germ‐enriched high‐protein functional beverage based on pear‐cantaloupe juice. Food Science & Nutrition, 10(11), 3651–3661. https://doi.org/10.1002/fsn3.2963

Hernández-López, I., Alamprese, C., Cappa, C., Prieto-Santiago, V., Abadias, M., & Aguiló-Aguayo, I. (2023). Effect of spirulina in bread formulated with wheat flours of different alveograph strength. Foods, 12(20), 3724. https://doi.org/10.3390/foods12203724

Jia, X., Cui, H., Qin, S., Ren, J., Zhang, Z., An, Q., Zhang, N., Yang, J., Yang, Y., Fan, G., & Pan, S. (2024). Characterizing and decoding the key odor compounds of Spirulina platensis at different processing stages by sensomics. Food Chemistry, 461, 140944. https://doi.org/10.1016/j.foodchem.2024.140944

Junianto. (2022). Effect of spirulina flour on the composition of proximate donate. Juvenil Journal, 3(3), 73–78.

Maemunah, S., Hutomo, G. S., Noviyanty, A., & Rahim, A. (2022). Physicochemical, functional and sensory characteristics of prebiotic noodles from sago starch (Metroxylon sp.) double modification results. Jurnal Pengolahan Pangan, 7(2), 80–91.

Mazareta, S., Sulistiawati, E., Evitasari, R. T., Setyawan, M., & Hakika, D. C. (2024). Pembuatan serbuk fikobiliprotein dari Spirulina platensis melalui proses freezing-thawing dan freeze-drying. Eksergi Jurnal Ilmiah Teknik Kimia, 21(3), 220. https://doi.org/10.31315/e.v21i3.12453

Muresan, C., Pop, A., Socaci, S., Man, S., Fărcas, A., Nagy, M., & Rus, B. (2016). The influence of different proportions of spirulina (Arthrospira plantensis) on the quality of pasta. Journal of Agroalimentary Processes and Technologies, 22(1), 24–27.

Ntau, L. A., Labatjo, R., & Arbie, F. Y. (2022). Testing chemical properties on wet noodles has been suspected with plush flour (Rastrelliger sp.). Jambura Journal, 4(1), 397–405.

Paraskevopoulou, A., Kaloudis, T., Hiskia, A., Steinhaus, M., Dimotikali, D., & Triantis, T. M. (2024). Volatile profiling of spirulina food supplements. Foods, 13(8), 1257. https://doi.org/10.3390/foods13081257

Paula da Silva, S., Ferreira do Valle, A., & Perrone, D. (2021). Microencapsulated Spirulina maxima biomass as an ingredient for the production of nutritionally enriched and sensorially well-accepted vegan biscuits. LWT, 142, 110997. https://doi.org/10.1016/j.lwt.2021.110997

Pradana, Y. S., Dewi, R. N., Di Livia, K., Arisa, F., Rochmadi, Cahyono, R. B., & Budiman, A. (2020). Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction-transesterification process using palm oil as a co-solvent of methanol. Open Chemistry, 18(1), 833–842. https://doi.org/10.1515/chem-2020-0133

Pratama, A. I., Lioe, H. N., Yuliana, N. D., & Ogawa, M. (2022). Umami compounds present in umami fraction of acid-hydrolyzed spirulina (Spirulina platensis). Algal Research, 66, 102764. https://doi.org/10.1016/j.algal.2022.102764

Putri, N. A., Dewi, R. N., Lestari, R., Yuniar, R. A., Ma’arif, L. M., & Erianto, R. (2023). Microalgae as a bioremediation agent for palm oil mill effluent: Production of biomass and high added value compounds. Jurnal Rekayasa Kimia & Lingkungan, 18(2), 149–161. https://doi.org/10.23955/rkl.v18i2.34018

Putri, W. A., Al Maqsidi, M. A., Achmad, Z., Hadi, F., & Nur, M. M. A. (2023). Pengaruh pelarut, rasio pelarut, dan waktu ekstraksi terhadap astaxanthin dari Haematococcus sp. dengan bantuan ultrasound assisted extraction. Eksergi, 20(3), 156. https://doi.org/10.31315/e.v20i3.10733

Ravi, M., De, S. L., Azharuddin, S., & Paul, S. F. D. (2010). The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutrition and Dietary Supplements, 2, 78–83.

Sari, B. L., Dewi, E. N., & Fahmi, A. S. (2022). Pengaruh penambahan Spirulina platensis sebagai sumber protein nabati pada daging analog bagi vegetarian. Jurnal Mutu Pangan: Indonesian Journal of Food Quality, 9(2), 76–83. https://doi.org/10.29244/jmpi.2022.9.2.76

Seghiri, R., Kharbach, M., & Essamri, A. (2019). Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. Journal of Food Quality, 2019, 1–11. https://doi.org/10.1155/2019/3707219

Syaichurrozi, I., Toron, Y. S., Dwicahyanto, S., & Wardalia, W. (2023). Pengaruh perbedaan jenis dan konsentrasi sumber nitrogen (NaNO3 dan urea) terhadap produksi biomasa Spirulina platensis. Eksergi, 20(2), 112. https://doi.org/10.31315/e.v20i2.9367

Syaichurrozi, I., Wardalia, W., Dwicahyanto, S., & Toron, Y. S. (2022). Pengaruh variasi konsentrasi NaNO3 pada medium raoof terhadap kultivasi Spirulina platensis. Eksergi, 19(1), 15. https://doi.org/10.31315/e.v19i1.6581

Urlass, S., Wu, Y., Nguyen, T. T. L., Winberg, P., Turner, M. S., & Smyth, H. (2023). Unravelling the aroma and flavour of algae for future food applications. Trends in Food Science & Technology, 138, 370–381. https://doi.org/10.1016/j.tifs.2023.06.018

Utari, P., Dewi, R. N., & Ilmiyanti, D. (2023). Organoleptic, proximate and heavy metal analysis of Bruguiera gymnorrhiza mangrove chips. Journal Perikanan, 13(4), 979–990.

Wang, F., Yu, X., Cui, Y., Xu, L., Huo, S., Ding, Z., Hu, Q., Xie, W., Xiao, H., & Zhang, D. (2023). Efficient extraction of phycobiliproteins from dry biomass of Spirulina platensis using sodium chloride as extraction enhancer. Food Chemistry, 406, 135005. https://doi.org/10.1016/j.foodchem.2022.135005

Wijayati, P. D., Harianto, N., & Suryana, A. (2019). Permintaan pangan sumber karbohidrat di Indonesia. Analisis Kebijakan Pertanian, 17(1), 13. https://doi.org/10.21082/akp.v17n1.2019.13-26

Yuliani, Winarni Agustini, T., & Nurcahya Dewi, E. (2020). Intervensi O. bacilicum terhadap kandungan protein dan karakteristik sensorik S. platensis. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(2), 225–235. https://doi.org/10.17844/jphpi.v23i2.31126

Zen, C. K., Tiepo, C. B. V., da Silva, R. V., Reinehr, C. O., Gutkoski, L. C., Oro, T., & Colla, L. M. (2020). Development of functional pasta with microencapsulated spirulina: Technological and sensorial effects. Journal of the Science of Food and Agriculture, 100(5), 2018–2026. https://doi.org/10.1002/jsfa.10219

Zeng, Q., Wang, J. J., Zhang, Y., Song, Y., Liang, J., & Zhang, X. (2020). Recovery and identification bioactive peptides from protein isolate of Spirulina platensis and their in vitro effectiveness against oxidative stress‐induced erythrocyte hemolysis. Journal of the Science of Food and Agriculture, 100(9), 3776–3782. https://doi.org/10.1002/jsfa.10408

Žilić, S., Barać, M., Pešić, M., Dodig, D., & Ignjatović-Micić, D. (2011). Characterization of proteins from grain of different bread and durum wheat genotypes. International Journal of Molecular Sciences, 12(9), 5878–5894. https://doi.org/10.3390/ijms12095878




DOI: https://doi.org/10.31315/eksergi.v22i1.13697

Refbacks

  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".

Contact  Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

 

 Creative Commons License

Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

Lihat Statistik Jurnal Kami

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor