Used Lubricating Oil Treatment and Reuse for Sustainable Production Processes in Cement Industry
Abstract
Used lubricating oil is one type of hazardous waste produced in the chemical industry, including the cement industry. PT. ITP Unit Palimanan has obtained a permit to process hazardous waste in the form of used lubricant oil since February 21, 2023. Therefore, starting from March 2023, PT. ITP Unit Palimanan has been utilizing used lubricant oil for open chain lubrication. The used lubricant oil, which is dark in color and contains a high amount of particles, is reprocessed through a filtration process before being used. In this process, the contaminating particles are reduced, and the used lubricant oil can be reused as lubrication material for open chains within PT. ITP Unit Palimanan itself. In 2019-2021, the average total generation of used lubricant oil was around 125 tons per year. Of this amount, approximately 90% was suitable for reuse as it contained metal and water levels below the threshold limits. Through this reuse process, the substitution of lubricant oil for open chain equipment can be reduced by 95.5%, equivalent to Rp 1,514,556,289 per year or Rp 4,207,101 per day. Besides the cost savings, PT. ITP Unit Palimanan can significantly reduce the burden of used lubricant oil waste on the environment through this innovation.
Keywords
Full Text:
PDFReferences
Abdulkareem, A. S., Afolabi, A. S., Ahanonu, S. O., & Mokrani, T. (2014). Effect of treatment methods on used lubricating oil for recycling purposes. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 36(9), 966–973. https://doi.org/10.1080/15567036.2010.549920
Aini, S., & Supratikno, S. (2018). Application of five isoterm adsorption equilibrium models on adsorption of Chrom VI metal ion by zeolite. Eksergi, 15(2), 48–53. https://doi.org/10.31315/E.V15I2.2385
Aljabiri, N. A. (2018). Comparative study of recycling used lubricating oils using various methods. Journal of Scientific and Engineering Research, 5(9), 168–177. http://www.jsaer.com
Anisuzzaman, S. M., Jumaidi, M. H., & Nasir, N. N. M. (2021). Used lubricating oil recovery process and treatment methods: A review. IOP Conference Series: Materials Science and Engineering, 1195(1), 012031. https://doi.org/10.1088/1757-899x/1195/1/012031
Belchinskaya, L., Zhuzhukin, K. V., Ishchenko, T., & Platonov, A. (2021). Impregnation of wood with waste engine oil to increase water-and bio-resistance. Forests, 12(12), Article 1762. https://doi.org/10.3390/f12121762
Botas, J. A., Moreno, J., Espada, J. J., Serrano, D. P., & Dufour, J. (2017). Recycling of used lubricating oil: Evaluation of environmental and energy performance by LCA. Resources, Conservation and Recycling, 125, 315–323. https://doi.org/10.1016/j.resconrec.2017.07.010
Che Jamin, N., & Zalina Mahmood, N. (2015). Hazardous waste management in Malaysia: A case study on cement manufacturing. Procedia Engineering, 118, 35–41. https://doi.org/10.13140/RG.2.1.3646.2808
Elehinafe, F. B., Ezekiel, S. N., Okedere, O. B., & Odunlami, O. O. (2022). Cement industry–Associated emissions, environmental issues and measures for the control of the emissions. Mechanical Engineering for Society and Industry, 2(1), 17–25. https://doi.org/10.31603/mesi.5622
Hassanain, E. M., Yacout, D. M. M., Metwally, M. A., & Hassouna, M. S. (2017). Life cycle assessment of waste strategies for used lubricating oil. International Journal of Life Cycle Assessment, 22(8), 1232–1240. https://doi.org/10.1007/s11367-016-1255-x
Ilcham, A., Tri Retno, D., Syahputra, A., & Novie Aprianto, P. S. T. K. M. (2013). Pengaruh oil sludge Pertamina Surabaya terhadap kuat tekan keramik tradisional. Eksergi, 11(1), 7–11.
Mannu, A., Garroni, S., Porras, J. I., & Mele, A. (2020). Available technologies and materials for waste cooking oil recycling. Processes, 8(3), Article 288. https://doi.org/10.3390/pr8030288
Moses, K. K., Aliyu, A., Hamza, A., & Mohammed-Dabo, I. A. (2023). Recycling of waste lubricating oil: A review of the recycling technologies with a focus on catalytic cracking, techno-economic and life cycle assessments. Journal of Environmental Chemical Engineering, 11(6), Article 111273. https://doi.org/10.1016/j.jece.2023.111273
Pinheiro, C. T., Quina, M. J., & Gando-Ferreira, L. M. (2021). Management of waste lubricant oil in Europe: A circular economy approach. Critical Reviews in Environmental Science and Technology, 51(18), 2015–2050. https://doi.org/10.1080/10643389.2020.1771887
Restu Dewati, P., Halim Purbohandono, A., & Budiman, A. (2013). Pre-treatment process of biodiesel production from waste cooking oil. Eksergi, 11(1), 1–6.
Sheikh, A. M., Khashaba, M. I., & Ali, W. Y. (2011). Reducing the mechanical wear in a dusty environment (cement factory). International Journal of Engineering & Technology, 11(6), 138–144. https://www.researchgate.net/publication/265999413
Silva, N. R., Rodrigues, T. O., Braga, T. E. N., Christoforo, A. L., & Silva, D. A. L. (2022a). Re-refining of lubricant oil used and contaminated (LOUC) or its combustion in cement plants? An exploratory study in Brazil based on the life cycle assessment and circularity indicators. Sustainable Production and Consumption, 33, 360–371. https://doi.org/10.1016/j.spc.2022.07.017
Wahyu, L., Setyaningsih, N., Zahra, I., Asmira, N., Chairiza, F. W., & Kimia, J. T. (2017). Aktivasi dan aplikasi zeolit alam sebagai adsorben logam kromium dalam air limbah industri penyamakan kulit. Eksergi, 14(1), 7–11. https://doi.org/10.31315/E.V14I1.2013
Widodo, S., Khoiruddin, K., Ariono, D., Subagjo, S., & Wenten, I. G. (2020). Re-refining of waste engine oil using ultrafiltration membrane. Journal of Environmental Chemical Engineering, 8(3), Article 103789. https://doi.org/10.1016/j.jece.2020.103789
Yu, M., Ma, H., & Wang, Q. (2012). Research and recycling advancement of used oil in China and all over the world. Procedia Environmental Sciences, 16, 239–243. https://doi.org/10.1016/j.proenv.2012.10.033
DOI: https://doi.org/10.31315/eksergi.v22i1.12477
Refbacks
- There are currently no refbacks.
Article Metrics
Metrics powered by PLOS ALM
Eksergi p-ISSN 1410-394X, e-ISSN 2460-8203, is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".
Contact Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.