Emotion-Based Music Classification using the Fuzzy Inference System (FIS) Mamdani Algorithm
Abstract
References
R. A. Rehfeldt, I. Tyndall, and J. Belisle, “Music as a Cultural Inheritance System: A Contextual-Behavioral Model of Symbolism, Meaning, and the Value of Music,” Behav. Soc. Issues, vol. 30, no. 1, pp. 749–773, Dec. 2021, doi: 10.1007/s42822-021-00084-w.
F. Vass, “Visuosonic Counterpoint: Seeing Music and Hearing Dance,” in William Forsythe’s Postdramatic Dance Theater. Cognitive Studies in Literature and Performance. Palgrave Macmillan, Cham, 2023, pp. 157–179.
W. Xu, M. Li, W. Liu, and G. Lin, “Ritualizing the mundanity of holidays in usual environment,” Tour. Manag. Perspect., vol. 47, p. 101133, Jun. 2023, doi: 10.1016/j.tmp.2023.101133.
E. Perzycka-Borowska, M. Gliniecka, K. Kukiełko, and M. Parchimowicz, “Socio-Educational Impact of Ukraine War Murals: Jasień Railway Station Gallery,” Arts, vol. 12, no. 3, p. 112, May 2023, doi: 10.3390/arts12030112.
S. Saifullah, Y. Fauziah, and A. S. Aribowo, “Comparison of Machine Learning for Sentiment Analysis in Detecting Anxiety Based on Social Media Data,” Jan. 2021, [Online]. Available: http://arxiv.org/abs/2101.06353.
N. Di Stefano, P. Vuust, and E. Brattico, “Consonance and dissonance perception. A critical review of the historical sources, multidisciplinary findings, and main hypotheses,” Phys. Life Rev., vol. 43, pp. 273–304, Dec. 2022, doi: 10.1016/j.plrev.2022.10.004.
M. Majno, “‘The two voices,’ or more? Music and gender from myth and conquests to the neurosciences,” J. Neurosci. Res., vol. 101, no. 5, pp. 604–632, May 2023, doi: 10.1002/jnr.25175.
V. Hänninen and A. Koski-Jännes, “Being Moved: A Meaningful but Enigmatic Emotional Experience,” Hum. Arenas, Apr. 2023, doi: 10.1007/s42087-023-00340-y.
K. Li, L. Weng, and X. Wang, “The State of Music Therapy Studies in the Past 20 Years: A Bibliometric Analysis,” Front. Psychol., vol. 12, Jun. 2021, doi: 10.3389/fpsyg.2021.697726.
N. Mao, “The Role of Music Therapy in the Emotional Regulation and Psychological Stress Relief of Employees in the Workplace,” J. Healthc. Eng., vol. 2022, pp. 1–7, Jan. 2022, doi: 10.1155/2022/4260904.
X. Lin et al., “Virtual Reality-Based Musical Therapy for Mental Health Management,” in 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Jan. 2020, pp. 0948–0952, doi: 10.1109/CCWC47524.2020.9031157.
O. Brancatisano, A. Baird, and W. F. Thompson, “Why is music therapeutic for neurological disorders? The Therapeutic Music Capacities Model,” Neurosci. Biobehav. Rev., vol. 112, pp. 600–615, May 2020, doi: 10.1016/j.neubiorev.2020.02.008.
D. Hesmondhalgh, R. Campos Valverde, D. B. V. Kaye, and Z. Li, “The Impact of Algorithmically Driven Recommendation Systems on Music Consumption and Production: A Literature Review,” UK Cent. Data Ethics Innov. Reports, 2023, [Online]. Available: https://ssrn.com/abstract=4365916.
Z. Sarsenbayeva et al., “Does Smartphone Use Drive our Emotions or vice versa? A Causal Analysis,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Apr. 2020, pp. 1–15, doi: 10.1145/3313831.3376163.
F. O. Akinloye, O. Obe, and O. Boyinbode, “Development of an affective-based e-healthcare system for autistic children,” Sci. African, vol. 9, p. e00514, Sep. 2020, doi: 10.1016/j.sciaf.2020.e00514.
S. Vashishtha and S. Susan, “Unsupervised Fuzzy Inference System for Speech Emotion Recognition using audio and text cues (Workshop Paper),” in 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM), Sep. 2020, pp. 394–403, doi: 10.1109/BigMM50055.2020.00067.
Tundo and S. Saifullah, “Fuzzy Inference System Mamdani dalam Prediksi Produksi Kain Tenun Menggunakan Rule Berdasarkan Random Tree,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 3, pp. 443–452, 2022.
Š. Mrvelj and M. Matulin, “FLAME-VQA: A Fuzzy Logic-Based Model for High Frame Rate Video Quality Assessment,” Futur. Internet, vol. 15, no. 9, p. 295, Sep. 2023, doi: 10.3390/fi15090295.
S. Vashishtha, V. Gupta, and M. Mittal, “Sentiment analysis using fuzzy logic: A comprehensive literature review,” WIREs Data Min. Knowl. Discov., Jun. 2023, doi: 10.1002/widm.1509.
A. F. Claret, K. R. Casali, T. S. Cunha, and M. C. Moraes, “Automatic Classification of Emotions Based on Cardiac Signals: A Systematic Literature Review,” Ann. Biomed. Eng., Aug. 2023, doi: 10.1007/s10439-023-03341-8.
E. H. Margulis, P. C. M. Wong, C. Turnbull, B. M. Kubit, and J. D. McAuley, “Narratives imagined in response to instrumental music reveal culture-bounded intersubjectivity,” Proc. Natl. Acad. Sci., vol. 119, no. 4, Jan. 2022, doi: 10.1073/pnas.2110406119.
J. Z. Wang et al., “Unlocking the Emotional World of Visual Media: An Overview of the Science, Research, and Impact of Understanding Emotion,” Proc. IEEE, pp. 1–51, 2023, doi: 10.1109/JPROC.2023.3273517.
Y. Xia and F. Xu, “Study on Music Emotion Recognition Based on the Machine Learning Model Clustering Algorithm,” Math. Probl. Eng., vol. 2022, pp. 1–11, Oct. 2022, doi: 10.1155/2022/9256586.
R. F. Cádiz, “Creating Music With Fuzzy Logic,” Front. Artif. Intell., vol. 3, no. 59, Oct. 2020, doi: 10.3389/frai.2020.00059.
M. M. Mariani, R. Perez‐Vega, and J. Wirtz, “AI in marketing, consumer research and psychology: A systematic literature review and research agenda,” Psychol. Mark., vol. 39, no. 4, pp. 755–776, Apr. 2022, doi: 10.1002/mar.21619.
M. Barthet, G. Fazekas, and M. Sandler, “Music Emotion Recognition: From Content- to Context-Based Models,” Lect. Notes Comput. Sci., vol. 7900, pp. 228–252, 2013, doi: 10.1007/978-3-642-41248-6_13.
Z. Dair, R. Donovan, and R. O’Reilly, “Classification of Emotive Expression Using Verbal and Non Verbal Components of Speech,” in 2021 32nd Irish Signals and Systems Conference (ISSC), Jun. 2021, pp. 1–8, doi: 10.1109/ISSC52156.2021.9467869.
S. Saifullah, “The Fuzzy-AHP approach using Normalized Decision Matrix on Tourism Trend Ranking based-on Social Media,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 2, p. 153, Sep. 2022, doi: 10.26798/jiko.v6i2.304.
Y. Fauziah, S. Saifullah, and A. S. Aribowo, “Design Text Mining for Anxiety Detection using Machine Learning based-on Social Media Data during COVID-19 pandemic,” in Proceeding of LPPM UPN “Veteran” Yogyakarta Conference Series 2020–Engineering and Science Series, 2020, vol. 1, no. 1, pp. 253–261, doi: 10.31098/ess.v1i1.117.
A. Meng, P. Ahrendt, J. Larsen, and L. K. Hansen, “Temporal Feature Integration for Music Genre Classification,” IEEE Trans. Audio, Speech Lang. Process., vol. 15, no. 5, pp. 1654–1664, Jul. 2007, doi: 10.1109/TASL.2007.899293.
S. Saifullah, “Fuzzy-AHP approach using Normalized Decision Matrix on Tourism Trend Ranking based-on Social Media,” J. Inform., vol. 13, no. 2, pp. 16–23, Jul. 2019, doi: 10.26555/jifo.v13i2.a15268.
DOI: https://doi.org/10.31315/cip.v2i1.10763
___________________________________________________________
Computing and Information Processing Letters
ISSN
Published by Department of Informatics, Universitas Pembangunan Naisonal Veteran Yogyakarta
W : http://jurnal.upnyk.ac.id/index.php/cip/index
E : [email protected], [email protected]
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
View My Stats